
Susu Smart Contract Design 

 

Definitions 

 
Round​​ - The time during which each participant in the Susu pays the contribution amount and 
one participant receives the pool of money. 
 
Cycle​​ - The time during which each participant receives money once. Equal to number of 
participants * round. 
 
 

Susu Lifecycle 

 
1. Starting a group:​​ A Susu group is created by deploying a new Susu contract on the 

blockchain. The deployer of the contract is automatically designated as the owner and 
they are added (by default) to their own group.  They are the group organizer and get to 
initialize the group with the properties listed below.  Note that once the group is created 
all items are unchangeable.  I also added variable names to be used in the rest of this 
document for brevity. 

a. Name of the group [​groupName​] 
b. Number of people in the group [​groupSize​] 
c. The frequency (monthly?  weekly?) [​frequency​] 
d. The contribution rates (1 ETH, 0.1 ETH) [​contribAmtWei​] 

2. Joining:​​ Anyone can join the group. To join the group you must call a certain method on 
the contract. The new account’s address then gets recorded in the Susu contract. 

3. Contributing:​​ Once the group is full (the number of those who have Joined from #2 
matches “number_recipients”)​ ​then it is ready for contributions.  Each recipient visits the 
website and clicks the “contribute” button to chip in their share. The contribution amount 
MUST match the contribution_amt or it will be rejected and the contribution will not 
count. The page reflects who has and has-not contributed for this cycle and how much 
each person contributed.  The contract records how much each recipient has 
contributed. 

4. Paying Out:​​ The group owner is then responsible for clicking the “Pay Out” button at the 
end of the cycle. The owner cannot invoke this action if the group is not full of people 
and all people have posted their contributions for this cycle. 

5. Leaving a group:​​ Anyone in the group can leave anytime by clicking the “I’m a little 
bitch” button.  When they do this they get their deposit back along with any contributions 
they’ve made during the ​current​ cycle. 



6. Terminating a group:​​ Only the group owner can finally terminate a group.  Any 
remaining members will be given back their deposits and any contributions that they 
have made to the current cycle. 

 

Other Supporting Elements 

1. We can potentially use components from ​OpenZeppelin​ to help make a secure contract. 
a. Ownership​ (​Example in CryptoZombies​) 
b. Math 
c. Payment 

2. Create a normal legal contract version of the Susu terms and integrate with ​OpenLaw​? 
3. Think about potentially adding ​SageWise​. 

 

Other Notes 

● Online Solidity IDE/Compiler  
● For securities look at using ​ERC-884​. 
● Etherscan​: For checking the status of items on blockchains? 
● Also worth reviewing Consensys’ “​Smart Contract Best Practices​” as we build this out. 
● Deploying from the browser article ​HERE 

https://openzeppelin.org/
https://github.com/OpenZeppelin/openzeppelin-solidity/tree/master/contracts/ownership
https://cryptozombies.io/en/lesson/3/chapter/3
https://github.com/OpenZeppelin/openzeppelin-solidity/tree/master/contracts/math
https://github.com/OpenZeppelin/openzeppelin-solidity/tree/master/contracts/payment
https://openlaw.io/
https://github.com/Sagewise/SafetyNetSoliditySDK
https://remix.ethereum.org/#optimize=false&version=soljson-v0.4.24+commit.e67f0147.js
https://medium.com/coinmonks/tokenising-shares-introducing-erc-884-cc491258e413
https://etherscan.io/
https://consensys.github.io/smart-contract-best-practices/
https://medium.com/@JusDev1988/part-2-deploying-smart-contracts-in-the-browser-with-web3js-and-vanilla-javascript-f85214113fec

